Abstract
Abstract Additivity with respect to exact sequences is, notoriously, a fundamental property of the algebraic entropy of group endomorphisms. It was proved for abelian groups by using the structure theorems for such groups in an essential way. On the other hand, a solvable counterexample was recently found, showing that it does not hold in general. Nevertheless, we give a rather short proof of the additivity of algebraic entropy for locally finite groups that are either quasihamiltonian or FC-groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.