Abstract

Aqueous zinc-ion batteries (ZIBs) stand out as a promising next-generation electrochemical energy storage technology, offering notable advantages such as high specific capacity, enhanced safety, and cost-effectiveness. However, the application of aqueous electrolytes introduces challenges: Zn dendrite formation and parasitic reactions at the anode, as well as dissolution, electrostatic interaction, and by-product formation at the cathode. In addressing these electrode-centric problems, additive engineering has emerged as an effective strategy. This review delves into the latest advancements in electrolyte additives for ZIBs, emphasizing their role in resolving the existing issues. Key focus areas include improving morphology and reducing side reactions during battery cycling using synergistic effects of modulating anode interface regulation, zinc facet control, and restructuring of hydrogen bonds and solvation sheaths. Special attention is given to the efficacy of amino acids and zwitterions due to their multifunction to improve the cycling performance of batteries concerning cycle stability and lifespan. Additionally, the recent additive advancements are studied for low-temperature and extreme weather applications meticulously. This review concludes with a holistic look at the future of additive engineering, underscoring its critical role in advancing ZIB performance amidst the complexities and challenges of electrolyte additives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.