Abstract
ObjectivesTo develop and validate a simple approach for building cost-effective imaging phantoms for Cone Beam Computed Tomography (CBCT) using a modified Polyjet additive manufacturing technology where a single material can mimic a range of human soft-tissue radiation attenuation. Materials and MethodsSingle material test phantoms using a cubic lattice were designed in 3-Matic 15.0 software . Keeping the individual cubic lattice volume constant, eight different percentage ratio (R) of air: material from 0% to 70% with a 10% increment were assigned to each sample. The phantoms were printed in three materials, namely Vero PureWhite, VeroClear and TangoPlus using Polyjet technology. The CT value analysis, non-contact profile measurement and microCT-based volumetric analysis was performed for all the samples. ResultsThe printed test phantoms produced a grey value spectrum equivalent to the radiation attenuation of human soft tissues in the range of −757 to +286 HU on CT. The results from dimensional comparison analysis of the printed phantoms with the digital test phantoms using non-contact profile measurement showed a mean accuracy of 99.07 % and that of micro-CT volumetric analysis showed mean volumetric accuracy of 84.80–94.91%. The material and printing costs of developing 24 test phantoms was 83.00 Euro. ConclusionsThe study shows that additive manufacturing-guided macrostructure manipulation modifies successfully the radiographic visibility of a material in CBCT imaging with 1 mm3 resolution, helping customization of imaging phantoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.