Abstract

Irregular porous scaffold through Voronoi tessellation based on global modeling demonstrated randomness to a certain degree and susceptibility to producing large processing deviations. A modeling method for new types of scaffolds based on periodic arrays of Voronoi unit cell was proposed in this study. These porous scaffolds presented controllable local cells and satisfactory mechanical properties. The topological structure of the Voronoi unit cell was controlled using three independent cell design factors (Voronoi polyhedron volume V, face-centered scaled factor F1, and body-centered scaled factor F2), and multilevel Voronoi-lattice scaffolds were constructed on the basis of periodic arrays of the Voronoi unit cell. Compressive test and simulation were combined to quantify the mechanical properties of scaffolds. The regression equations were established using the response surface method (RSM) to determine relationships between Voronoi unit cell design factors and structural characteristic parameters and mechanical properties. The same trends were observed in stress-strain curves of the compressive test and simulation. The mechanical properties of scaffolds can be appropriately quantified via simulation. Regression equations based on RSM can properly predict the structural characteristic parameters and mechanical properties of the scaffold. Compared with V, F1 and F2 exerted a stronger influence on the structural characteristic parameters and mechanical properties of the scaffold. The modeling method of the multilevel Voronoi-lattice scaffold based on the Voronoi unit cell was proposed in this study to design the porous scaffold and meet the requirements of human bone morphology, mechanical properties, and actual manufacturing by adjusting factors V, F1, and F2. The proposed method can provide a feasible strategy for designing implants with suitable and similar morphologies and mechanical properties to cancellous bone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call