Abstract
Plate-lattices are an emerging category of mechanical metamaterials with exceptional mechanical performance. In this paper, a family of half-open-cell plate-lattices is innovated with exceptional mechanical properties and additive manufacturability. The elastoplastic properties and large strain response of the novel plate-lattices are investigated both numerically and experimentally. Design maps for tailoring the anisotropic index reveal that elastically isotropic plate-lattices can be obtained for a wide range of relative densities. Numerical results reveal that the isotropic plate-lattices exhibit significantly higher elastic properties than other competing topologies such as conventional truss-lattices and isotropic smooth shell-lattices, and their bulk modulus can attain the Hashin-Shtrikman upper bound for all relative densities. Large strain simulations demonstrate the remarkable energy absorption capacity of the novel plate-lattices. The numerical findings are confirmed through the compression experiments on the anisotropic and isotropic stainless steel 316 L specimens manufactured by selective laser melting. This work proposes a novel type of plate-lattices with both exceptional mechanical performance and good additive manufacturability, which opens a new channel for the design of lightweight mechanical metamaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.