Abstract

Additive trees are graph-theoretic models that can be used for constructing network representations of pairwise proximity data observed on a set of N objects. Each object is represented as a terminal node in a connected graph; the length of the paths connecting the nodes reflects the inter-object proximities. Carroll, Clark, and DeSarbo (J Classif 1:25–74, 1984) developed the INDTREES algorithm for fitting additive trees to analyze individual differences of proximity data collected from multiple sources. INDTREES is a mathematical programming algorithm that uses a conjugate gradient strategy for minimizing a least-squares loss function augmented by a penalty term to account for violations of the constraints as imposed by the underlying tree model. This article presents an alternative method for fitting additive trees to three-way two-mode proximity data that does not rely on gradient-based optimization nor on penalty terms, but uses an iterative projection algorithm. A real-world data set consisting of 22 proximity matrices illustrated that the proposed method gave virtually identical results as the INDTREES method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call