Given a frame in a finite dimensional Hilbert space we construct additive perturbations which decrease the condition number of the frame. By iterating this perturbation, we introduce an algorithm that produces a tight frame in a finite number of steps. Additionally, we give sharp bounds on additive perturbations which preserve frames and we study the effect of appending and erasing vectors to a given tight frame. We also discuss under which conditions our finite-dimensional results are extendable to infinite-dimensional Hilbert spaces.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE