Abstract

δ-Hyperbolic metric spaces have been defined by M. Gromov in 1987 via a simple 4-point condition: for any four points u,v,w,x, the two larger of the distance sums d(u,v)+d(w,x),d(u,w)+d(v,x),d(u,x)+d(v,w) differ by at most 2δ. They play an important role in geometric group theory, geometry of negatively curved spaces, and have recently become of interest in several domains of computer science, including algorithms and networking. In this paper, we study unweighted δ-hyperbolic graphs. Using the Layering Partition technique, we show that every n-vertex δ-hyperbolic graph with δ≥1/2 has an additive O(δlog n)-spanner with at most O(δn) edges and provide a simpler, in our opinion, and faster construction of distance approximating trees of δ-hyperbolic graphs with an additive error O(δlog n). The construction of our tree takes only linear time in the size of the input graph. As a consequence, we show that the family of n-vertex δ-hyperbolic graphs with δ≥1/2 admits a routing labeling scheme with O(δlog 2 n) bit labels, O(δlog n) additive stretch and O(log 2(4δ)) time routing protocol, and a distance labeling scheme with O(log 2 n) bit labels, O(δlog n) additive error and constant time distance decoder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.