Abstract

In this paper, we introduce and solve the following additive s-functional inequality: 0.1 $$\begin{aligned} \left\| f\left( x+y\right) - f(x )- f(y)\right\| \le \Vert s (f(x-y)-f(x)-f(-y))\Vert , \end{aligned}$$ where s is a fixed nonzero complex number with $$|s|<1$$ . Using the fixed point method and the direct method, we prove the Hyers–Ulam stability of the additive s-functional inequality (0.1) in complex Banach spaces. Furthermore, we prove the Hyers–Ulam stability of hom-derivations in complex Banach algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.