Abstract

In this paper we consider a fully nonparametric additive regression model for responses and predictors of various natures. This includes the case of Hilbertian and incomplete (like censored or missing) responses, and continuous, nominal discrete and ordinal discrete predictors. We propose a backfitting technique that estimates this additive model, and establish the existence of the estimator and the convergence of the associated backfitting algorithm under minimal conditions. We also develop a general asymptotic theory for the estimator such as the rates of convergence and asymptotic distribution. We verify the practical performance of the proposed estimator in a simulation study. We also apply the method to various real data sets, including those for a density-valued response regressed on a mixture of continuous and nominal discrete predictors, for a compositional response regressed on a mixture of continuous and ordinal discrete predictors, and for a censored scalar response regressed on a mixture of continuous and nominal discrete predictors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.