Abstract

In this article, we investigate additive properties on the Drazin inverse of elements in rings. Under the commutative condition of ab = ba, we show that a + b is Drazin invertible if and only if 1 + a D b is Drazin invertible. Not only the explicit representations of the Drazin inverse (a + b) D in terms of a, a D , b and b D , but also (1 + a D b) D is given. Further, the same property is inherited by the generalized Drazin invertibility in a Banach algebra and is extended to bounded linear operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.