Abstract

The assembly of cellulose nanocrystals (CNCs) that produce attractive structural color shows great potential in anti-counterfeiting application, but their processability and recyclability remain unsatisfactory due to the strong hydrogen bonds between CNCs. For the first time, optical anti-counterfeiting patterns are obtained by additive printing of surface-functionalized CNC inks (CNC-DC5700-NPES). The surface-functionalized CNC inks are prepared by sequential modification of CNCs with organosilane (DC5700) and polyoxyethylene ether (NPES), which show good flowability under shearing force and transform into a gel-like phase rapidly after printing, making possible ink-jet printing without additives. The printed patterns are transparent under natural light but show vivid interference color, showing anti-counterfeiting features between crossed polarizers. The texture and optical properties of the printed patterns can be facilely controlled by tuning the printing parameters, such as nozzle diameter, writing angle, and filling width. Moreover, the CNC-DC5700-NPES patterns with a core-shell structure could be collected in various solvents and reprinted after removing solvents. This work provided a new pathway for the preparation of optical anti-counterfeiting patterns from biomass resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.