Abstract
We incorporate our recent preconditioning techniques into the classical inverse power (Rayleigh quotient) iteration for computing matrix eigenvectors. Every loop of this iteration essentially amounts to solving an ill conditioned linear system of equations. Due to our modification we solve a well conditioned linear system instead. We prove that this modification preserves local quadratic convergence, show experimentally that fast global convergence is preserved as well, and yield similar results for higher order inverse iteration, covering the cases of multiple and clustered eigenvalues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.