Abstract

We show how some problems in additive number theory can be attacked in a novel way, using techniques from the theory of finite automata. We start by recalling the relationship between first-order logic and finite automata, and use this relationship to solve several problems involving sums of numbers defined by their base-2 and Fibonacci representations. Next, we turn to harder results. Recently, Cilleruelo, Luca, & Baxter proved, for all bases b ≥ 5, that every natural number is the sum of at most 3 natural numbers whose base-b representation is a palindrome (Cilleruelo et al., Math. Comput. 87, 3023–3055, 2018). However, the cases b = 2, 3, 4 were left unresolved. We prove that every natural number is the sum of at most 4 natural numbers whose base-2 representation is a palindrome. Here the constant 4 is optimal. We obtain similar results for bases 3 and 4, thus completely resolving the problem of palindromes as an additive basis. We consider some other variations on this problem, and prove similar results. We argue that heavily case-based proofs are a good signal that a decision procedure may help to automate the proof.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.