Abstract

AbstractLet R be a ring. A map f: R → R is additive if f(a + b) = f(a) + f(b) for all elements a and b of R. Here, a map f: R → R is called unit-additive if f(u + v) = f(u) + f(v) for all units u and v of R. Motivated by a recent result of Xu, Pei and Yi showing that, for any field F, every unit-additive map of (F) is additive for all n ≥ z, this paper is about the question of when every unit-additivemap of a ring is additive. It is proved that every unit-additivemap of a semilocal ring R is additive if and only if either R has no homomorphic image isomorphic to or R/J(R) ≅ with 2 = 0 in R. Consequently, for any semilocal ring R, every unit-additive map of (R) is additive for all n ≥ 2. These results are further extended to rings R such that R/J(R) is a direct product of exchange rings with primitive factors Artinian. A unit-additive map f of a ring R is called unithomomorphic if f(uv) = f(u)f(v) for all units u, v of R. As an application, the question of when every unit-homomorphic map of a ring is an endomorphism is addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call