Abstract

Part count reduction (PCR) is one of the typical motivations for using additive manufacturing (AM) processes. However, the implications and trade-offs of employing AM for PCR are not well understood. The deficits are mainly reflected in two aspects: (1) lifecycle-effect analysis of PCR is rare and scattered; (2) current PCR rules lack full consideration of AM capabilities and constraints. To fill these gaps, this paper first summarizes the main effect of general PCR (G-PCR) on lifecycle activities to make designers aware of potential benefits and risks and discusses in a point-to-point fashion the new opportunities and challenges presented by AM-enabled PCR (AM-PCR). Second, a new set of design rules and principles are proposed to support potential candidate detection for AM-PCR. Third, a dual-level screening and refinement design framework is presented aiming at finding the optimal combination of AM-PCR candidates. In this framework, the first level down-samples combinatory space based on the proposed new rules while the second one exhausts and refines each feasible solution via design optimization. A case study of a motorcycle steering assembly is considered to demonstrate the effectiveness of the proposed design rules and framework. In the end, possible challenges and limitations of the presented design framework are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.