Abstract
AbstractNovel low‐cost materials to uptake and detect vestigial amounts of pesticides are highly desirable for water quality monitoring. Herein, are demonstrated, for the first time, surface‐enhanced Raman scattering (SERS) sensors enabled via additively manufactured lattices coated with plasmonic nanoparticles (NPs) for detecting pesticides in real water samples. The architected lattices comprising polypropylene (PP) and multiwall carbon nanotubes (MWCNTs) are realized via fused filament fabrication (FFF). In the first stage, the SERS performance of the PP/MWCNT filaments coated with distinct metallic NPs (Ag NPs and Au NPs) is evaluated using methylene blue (MB) as molecular probe. Thereafter, distinctly architected hybrid SERS sensors with periodic porous and fully dense geometries are investigated as adsorbents to uptake MB from aqueous solutions and subsequent detection using SERS. The spatial distribution of MB and Ag NPs on the FFF‐printed lattices is accomplished by SERS imaging. The best hybrid composite is used as SERS probing system to detect low amounts of pesticides (thiram and paraquat) and offers a detection limit of 100 nm for both pesticides. As a proof‐of‐concept, FFF‐enabled test strips are used to detect in loco paraquat molecules spiked on real water samples (Estuary Aveiro water and tap water) using a portable Raman spectrometer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.