Abstract

In the present study, the first tailored steel based on HiperFer (high-performance ferrite) was developed specifically for the additive manufacturing process. This steel demonstrates its full performance potential when produced via additive manufacturing, e.g., through a high cooling rate, an in-build heat treatment, a tailored microstructure and counteracts potential process-induced defects (e.g. pores and cavities) via “active” crack-inhibiting mechanisms, such as thermomechanically induced precipitation of intermetallic (Fe,Cr,Si)2(W,Nb) Laves phase particles. Two governing mechanisms can be used to accomplish this: (I) “in-build heat treatment” by utilizing the “temper bead effect” during additive manufacturing and (II) “dynamic strengthening” under cyclic, plastic deformation at high temperature. To achieve this, the first HiperFerAM (additive manufacturing) model alloy with high precipitation kinetics was developed. Initial mechanical tests indicated great potential in terms of the tensile strength, elongation at rupture and minimum creep rate. During the thermomechanical loading, global sub-grain formation occurred in the HiperFerAM, which refined the grain structure and allowed for higher plastic deformation, and consequently, increased the elongation at rupture. The additive manufacturing process also enabled the reduction of grain size to a region, which has not been accessible by conventional processing routes (casting, rolling, heat treatment) so far.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.