Abstract

For zirconia-based technical ceramics, the unique advantages of micro-architecture geometries combined with the potent mechanical and functional properties have been challenging to implement owing to additive manufacturing restrictions. In this work, we present a stereolithography-based additive manufacturing approach involving slurry development for yttrium-stabilized tetragonal zirconia polycrystals (Y-TZP), followed by printing using a custom-built large-area projection micro-stereolithography system. After post-processing, i.e., polymer burnout and sintering, 98% relative density is reached in the printed Y-TZP parts. Thanks to the good manufacturing quality, the bulk-scale Y-TZP micro-honeycombs are able to display typical stretch-dominated behavior in out-of-plane compression, showing elastic loading (Stage I) and protracted brittle failure of individual walls over a significant strain (Stage II). For a Y-TZP micro-honeycomb consisting of 5 × 4 hexagonal cells with a wall thickness of 300 μm and a cell diameter of 1.40 mm, the energy dissipation density is measured to be 9.45 J/g, substantially higher than other ceramic honeycombs and packings reported earlier. This energy dissipation capability is mostly attributed to the progressive wall collapse seen in Stage II deformation, in which the perimeter walls are preferentially fragmented relative to the interior walls. According to finite element analysis, this phenomenon is a result of the deviation from uniaxial compression and the presence of stress gradients in the perimeter walls. We also find evidence for stress-induced martensitic transformation in the Y-TZP micro-honeycomb after compression, which may be another contributor to the observed energy dissipation capability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.