Abstract

Fabrication of glass with complex geocd the low resolution of particle-based or fused glass technologies. Herein, a high-resolution 3D printing of transparent nanoporous glass is presented, by the combination of transparent photo-curable sol-gel printing compositions and digital light processing (DLP) technology. Multi-component glass, including binary (Al2 O3 -SiO2 ), ternary (ZnO-Al2 O3 -SiO2 , TiO2 -Al2 O3 -SiO2 ), and quaternary oxide (CaO-P2 O5 -Al2 O3 -SiO2 ) nanoporous glass objects with complex shapes, high spatial resolutions, and multi-oxide chemical compositions are fabricated, by DLP printing and subsequent sintering process. The uniform nanopores of Al2 O3 -SiO2 -based nanoporous glasses with the diameter (≈6.04nm), which is much smaller than the visible light wavelength, result in high transmittance (>95%) at the visible range. The high surface area of printed glass objectives allows post-functionalization via the adsorption of functional guest molecules. The photoluminescence and hydrophobic modification of 3D printed glass objectives are successfully demonstrated. This work extends the scope of 3D printing to transparent nanoporous glasses with complex geometry and facile functionalization, making them available for a wide range of applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call