Abstract
PurposeTi-Al composite plates have been used in aerospace and other important fields for specific purposes in recent years. However, relatively few studies have concentrated on Ti-Al additive manufacturing because during additive manufacturing process the local fusion and mixing of Ti/Al are inevitable. These areas where Ti and Al are mixed locally, especially interface, could easily generate high residual stresses and cracks. This study aims to manufacture Ti-Al functionally graded material and investigate the interaction of interface.Design/methodology/approachIn this study, Ti6Al4V/AlSi10Mg functionally graded materials were fabricated by laser based directed energy deposition (L-DED) and a strategy using V interlayer to relieve interfacial stress was investigated.FindingsThe area between the two materials was divided into transition zone (TZ) and remelting zone (RZ). The phase distribution, microstructure and micro-Vickers hardness of the TZ and RZ were investigated. Typical intermetallic compounds (IMCs) such as TiAl3, Ti3Al and Ti5Si3 were found in both composites. The addition of V interlayer promoted the homogenization of IMCs near interface and led to the formation of new phases like V5Si3 and Al3V.Originality/valueThe solidification process near the interface of Ti-Al functionally graded material and the possible generation of different phases were described. The result of this paper proved the feasibility of manufacturing Ti-Al functionally graded material by L-DED.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.