Abstract

Among the material extrusion technologies of additive manufacturing, fused granular fabrication is playing a bigger role in the industry. The increase in the size of printers demands extrusion systems with higher deposition rates that facilitate printing larger parts in shorter times with a need for cost reduction. This cost reduction in fused granular fabrication systems is due to the utilisation of pellets as the material source for the prints, such as pellets that are the most common way of distributing polymeric materials in industry and do not need the usual previous transformation into filaments. Most of the polymers in the industry can be found in the shape of pellets, so the opportunities for developing new materials beside the traditional filaments found in the market are expanding. In this research, a novel composite material has been developed based on the blending of commercial thermoplastic polyurethane (TPU) and cork particles obtained from industrial waste at different concentrations. These materials have been processed at a laboratory scale, and their mechanical, thermal and rheological properties have been studied. Despite a 53.52% reduction in the maximum stress on the x-axis, an 81.82% decrease in the values obtained with specimens oriented on the z-axis and a shortage in the deformation values, the results reveal a remarkable weight reduction leading to 21.31% when compared to the TPU of the blends,. These results may open a path to further explore these blends and find suitable applications in industry as proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call