Abstract

Filament-based flexible material extrusion additive manufacturing is highly desirable yet faces critical challenges such as limited print resolution and repeatability. To enhance printability of a thermoplastic elastomer (TPE), a series of core-shell filaments comprising a TPE shell (Shore hardness 75 A) and a rigid ABS core are fabricated, with the ABS volume fraction varying from 11% to 78%. The presence of an ABS core imparts rigidity to the filament to inhibit buckling and allow for successful high-fidelity 3D printing. Rheological characterizations of TPE and ABS using capillary and parallel-plate viscometry point to the optimized extrusion parameters suitable for filament coextrusion, printability, and wettability between the print interfaces. Complex benchmark geometries are printed to verify the print resolution. Printed specimens with less than 20% ABS preserve the shore hardness of 75 A, providing flexibility and a soft touch to the printed structures. Izod impact, 3-point bending, and tensile tests reveal tunable mechanical properties of parts printed in z-direction with ABS+TPE filaments. Lower ABS content exhibits higher flexibility and impact resistance, while higher ABS imparts higher stiffness and tensile strength. Notably, the parts printed with 30–40% ABS exhibit higher toughness and impact strength than specimens composed of ABS or TPE alone. Lastly, a coil spring printed with a ABS+TPE filament exhibits reversible extension up to 120 mm, at least twice the reversible extension of an ABS-printed coil spring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.