Abstract

Additive manufacturing of jewellery alloys has been actively investigated for the past 10 years. Limited studies have been conducted on gold and platinum jewellery alloys. Platinum is of increased interest due to the technological challenges in investment casting. In the present paper, typical platinum jewellery alloys have been tested by laser track experiments on sheet materials. The effect of alloy composition on width and depth of the laser tracks was studied by metallography. Optimum parameters of the laser powder bed fusion (PBF-LB) process were determined for a typical 950Pt jewellery alloy by the preparation of dedicated test samples. Densities of >99.8% were reached for a wide range of processing parameters. However, for real jewellery parts the resulting density was found to depend significantly on the part geometry and on the chosen support structure. The supports must take into account the geometrical orientation of the part relative to the laser build direction and the orientation on the build plate. Local overheating gives rise to porosity in these areas. Therefore, the supports play an important role in thermal management and must be optimised for each part. The design of suitable supports was successfully demonstrated for a typical jewellery ring sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call