Abstract

Fused filament fabrication (FFF) was used to additively manufacture (3-D print) two-prototype circuit-analog (CA) absorbers. The CA absorbers consist of a lossy frequency selective surface (FSS), substrate, and ground plane. In this article, the FSS and substrate were manufactured using two different FFF materials to make a cohesive structure manufactured during a single printing procedure. To design the CA absorbers, the complex permittivity of FFF printed polylactic acid (PLA), bronze-, brass-, copper-, and iron-powder infused PLAs, and a graphite-PLA composite was measured using a free-space materials measurement system. Out of the candidate materials measured, graphite PLA and standalone PLA were selected as the FSSs and substrates, respectively. Complex permittivity data from the selected materials were input to Computer Simulation Technology Microwave Studio so that a genetic algorithm could optimize absorber dimensions. Reflectivity of the printed absorbers was measured using a free-space measurement setup. Measured reflectivity data were compared to that from simulations. A simulated-geometric tolerance study corroborated differences noted between ideal models and measured data. The results showed that FFF techniques can be used for CA-absorber designs and that 3-D printing settings can ultimately affect absorber performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.