Abstract

Ni based super alloys are widely used in engine turbines because of their proven performance at high temperatures. Manufacturing these parts by additive manufacturing (AM) methods provides researchers a lot of creative space for complex design to improve efficiency. Powder bed fusion (PBF) and direct energy deposition (DED) are the two most widely-used metal AM methods. Both methods are influenced by the source, parameters, design, and raw material. Selective laser melting is one of the laser-based PBF techniques to create small layer thickness and complex geometry with greater accuracy and properties. The layer-by-layer metal addition generates epitaxial growth and solidification in the built direction. There are different second phases in the Ni-based superalloys. This chapter details the micro-segregation of these particles and its influence on the microstructure, and mechanical properties are dependent on the process influencing parameters, the thermal kinetics during the process, and the post-processing treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call