Abstract

Geopolymers (GPs) have emerged as promising adsorbents for wastewater treatment due to their superior adsorption stability, tunable porosity, high adsorption capacity, and low-energy production. Despite their great promise, developing GPs with well-controlled hierarchical structures and high porosity remains challenging, and the mechanism underlying the ion adsorption process remains elusive. Here we report a cost-effective and universal approach to fabricate Na or K GPs with sophisticated architectures, high porosity, and arbitrary cation species exchange by means of additive manufacturing and a surfactant. The introduction of sodium lauryl sulfate (SLS) enhanced the porosity of the GP adsorbents, yielding NaGP-lattice-10%SLS adsorbent with a high total porosity of 80.8vol%. Combining static and dynamic adsorption tests, the effects of morphology, surfactant content, and cation species on Cs+ adsorption performance were systemically investigated. With an initial Cs+ concentration of 900mg/L, the printed NaGP exhibited a maximum Cs+ adsorption capacity of 80.1mg/g, outperforming other adsorbents reported so far. The quasi-second-order fit of the NaGP adsorbent showed overall higher R2 values than the quasi-first-order fit, indicating that the adsorption process was dominated by ion exchange. Combined with first-principles calculations, we verified that the content of water in the GP sod cages also affected the ion-exchange process between Na+ and Cs+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.