Abstract

Summary Ceramics would be ideal engineering materials if their brittleness and scattered fracture strength could be overcome. While ductility and extraordinary strength have been reported at the nanoscale, they both rapidly disappear when samples reach micrometer dimensions; furthermore, manufacturing is limited to elaborate approaches, which are purely scientific in nature. Here, we present a robust route to additively manufacture ductile, ultrastrong silicon oxycarbide (SiOC) via two-photon polymerization direct laser writing (TPP-DLW) of a preceramic resin and subsequent pyrolysis. We 3D-print micrometer-size pillars and architected materials with feature sizes down to ∼200 nm and characterize them under uniaxial compression. Independent of size, SiOC micropillars consistently deform plastically with strains up to 25% and strengths >7 GPa, across the entire range of examined diameters (1–20 μm). Our findings demonstrate straightforward fabrication of ductile, ultrastrong ceramics at previously unprecedented scales, potentially enabling manufacturing of engineering systems up to tens of millimeters in size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.