Abstract

An additive manufacturing process for fabricating ceramic matrix composites has been developed based on the C/C-SiC system. Automated fiber placement of the continuous carbon fibers in a polyether ether ketone matrix was performed to consolidate the carbon fibers into a printed preform. Pyrolysis was performed to convert the polymer matrix to porous carbon, and then Si was introduced by reactive melt infiltration to convert a portion of the carbon matrix to silicon carbide. The densities and microstructures were characterized after each step during the processing, and the mechanical properties were measured. The C/C-SiC composites exhibited a porosity of 10–20%, characteristic flexural strength of 234.91 MPa, and Weibull modulus of 3.21. The composites displayed toughness via a significant displacement to failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.