Abstract

State-of-the-art heat switches are only rarely employed in thermal system architectures, since they are rather bulky and have a limited thermal performance (expressed as the heat transfer ratio between the On and Off state). Using selective laser melting additive manufacturing technology, also known as 3D printing, we developed a compact flat-panel gas-gap heat switch that offers superior thermal performance, is simpler and more economic to produce and assemble, contains no moving parts, and is more reliable because it lacks welded joints. A prototype measuring 5×5×1 cm3 outer dimensions is developed with an integrated coolant heat sink to assess the feasibility of the technology. Later a second prototype measuring 3.2 mm thick, 10 cm by 10 cm frontal area panel is developed. An on-off heat conductance ratio of about 45 is measured at 100 K, and the on-conductance is 4.5 W/K. In addition to being compact, this type of heat switch has a large on-conductance compared to other types of cryogenic heat switches. This opens doors to utilize the heat switch for cryogenic temperature control applications. © 2016, International Institute of Refrigeration. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call