Abstract

PurposeInnovative startups have begun a trend using laser sintering (LS) technology patents expiration, namely, by introducing LS additive manufacturing (AM) machines that can overcome utilization barriers, such as the costliness of machines and productivity limitation. The recent rise of this trend has led the authors to investigate this new class of machines in novel settings, including hub configuration. There are various supply chain configurations to supply spare parts in industrial operations. This paper aims to explore the promise of a production configuration that combines the benefits of centralized production with the flexibility of local manufacturing without the huge costs related to it.Design/methodology/approachThis study quantitatively examines the feasibility of different AM-enabled spare parts supply chain configurations. Using cost data extracted from a case study, three scenarios per AM machine technology are modeled and compared.FindingsResults suggest that hub production configuration depending on the utilized AM machines can provide economic efficiency and effectiveness to reduce equipment downtime. While previous studies have suggested the need for AM machines with efficiency for single part production for a distributed supply chain, the findings in this research illustrate the positive relationship between multi-part production capability and the feasibility of a hub manufacturing configuration establishment.Originality/valueThis study explores the promise of a production configuration that combines the benefits of centralized production with the flexibility of local manufacturing without the huge costs related to it. Although the existing body of knowledge contains research on production decentralization, research on various levels of decentralization is lacking. Using a real-world case study, this study aims to compare the feasibility of different levels of decentralization for AM-enabled spare parts supply chains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call