Abstract

ABSTRACT Helical architectures were designed for the additive manufacturing of highly flexible polycaprolactone (PCL) scaffolds for engineering soft tissues, which commonly require high flexibility and predominantly function under large deformation conditions. It was found that the design parameters like revolution and radius of helical architectures highly affected the filament fusion or bonding during the fabrication process. The bonding-induced interlaced helical architectures resulted in a more uniform deformation pattern and a lower modulus. μCT-based finite element method was established to predict the large deformation responses of the scaffolds with helical architectures and patient-specific scaffold potentially for breast reconstruction, which showed well agreement with the experimental results. The fabricated scaffolds exhibited good shape recovery capability even under cyclical compression at a strain of about 20% for 10000 times. This exploration offers a promising way to predict the mechanical responses of flexible scaffolds with complex helical architectures under large deformation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.