Abstract

Titanium and its alloy are attractive materials used worldwide for various applications, especially for manufacturing fusion reactors and pressure vessels. This study aims to provide knowledge on the microstructural and mechanical characteristics of titanium grade 9 wall fabricated using wire feeding additive manufacturing (WFAM) with gas tungsten arc welding (GTAW)-aided technique. An inert environment is provided during the process to manufacture a defect-free wall. Due to varying thermal cycles, there is a variation in the microstructure of the WFAM processed wall. The change in the texture of the WFAM processed wall is analysed through electron backscatter diffraction spectroscopy (inverse pole figures and pole figures), which influences the material properties. The WFAM processed wall exhibits superior mechanical characteristics compared to wrought alloys. Numerous morphologies in the fractured surface infer the occurrence of ductile fracture. A comparative study has been conducted between the outcomes of finite element simulation and experimental results. The results of finite element simulation and experimentation were in good agreement. The compilation of results gathered from mechanical and microstructural characterization shows that gas tungsten arc welding-aided-WFAM titanium grade 9 wall is suitable for fabricating fusion reactors and pressure vessels. Hence, first-hand knowledge is gained on the fabrication of fusion reactors and pressure vessels in nuclear application using the tungsten arc welding-aided-WFAM titanium grade 9 wall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call