Abstract

Abstract In this article we present a biomimicking skeletal muscle actuator for prosthetics to overcome the issues of high operating temperatures, low contractile strain, complexity, high weight and cost, and linear output as seen with current and academic prosthetic actuators. The actuator proposed is a fuse filament fabrication (FFF) printed shape memory polymer (SMP) actuator that has nonlinear contractile and passive forces, contractile forces and strains comparable with mammalian skeletal muscle, reaction time under 1 s, low operating temperature of 70°C, and has a low mass (74.0 mg), volume (46.74 mm3), and material costs of $0.0098 per actuator. The FFF actuator is a SMP melt blend composite of polylactic acid and thermoplastic polyurethane with a mixture ratio of 7:3. The FFF actuator here has nonlinear contractile properties that have peak contractile stresses ranging from 0.58 to 0.17 MPa for 100–60% applied strains, respectively, where mammalian contraction values range from 0.1 MPa (typical/av...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call