Abstract

We describe a class of discontinuous additive functions \({a:X\to X}\) on a real topological vector space X such that \({a^n={\rm id}_X}\) and \({a({\mathcal{H}}){\setminus} {\mathcal{H}} \neq\emptyset}\) for every infinite set \({{\mathcal{H}} \subset X}\) of vectors linearly independent over \({\mathbb{Q}}\). We prove the density of the family of all such functions in the linear topological space \({{\mathcal{A}}_X}\) of all additive functions \({a:X\to X}\) with the topology induced on \({{\mathcal{A}}_X}\) by the Tychonoff topology of the space X X . Moreover, we consider additive functions \({a\in{\mathcal{A}}_X}\) satisfying \({a^n={\rm id}_X}\) and \({a({\mathcal{H}})= {\mathcal{H}}}\) for some Hamel basis \({{\mathcal{H}}}\) of X. We show that the class of all such functions is also dense in \({{\mathcal{A}}_X}\). The method is based on decomposition theorems for linear endomorphisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.