Abstract

AbstractThe melt stabilization activity of some of the most commercially significant phenolic antioxidants and phosphites (alone and in combination), without and with zinc stearate, was studied in high‐density polyethylene (HDPE) produced by Phillips catalyst technology. Multiple pass extrusion experiments were used to degrade the polymer melt progressively. The effect of stabilizers was assessed via melt flow rate (MFR) and yellowness index (YI) measurements conducted as a function of the number of passes. The level of the phenolic antioxidant remaining after each extrusion was determined by high‐performance liquid chromatography (HPLC). Phenolic antioxidants and phosphites both improved the melt stability of the polymer in terms of elt viscosity retention; the influence of zinc stearate was found to be almost insignificant. However, phosphites and zinc stearate decreased the discoloration caused by the phenolic antioxidants. A correlation was found between the melt stabilization performance of phosphites and their hydroperoxide decomposition efficiency determind via a model hydroperoxide compound. Steric and electronic effects associated with the phosphorus atom influenced the reactivity towards hydroperoxides. Furthermore, high hydrolytic stability did not automatically result in lower efficiency. Besides phosphite molecular structure, stabilization activity was also influenced by the structure of the primary phenolic antioxidant and the presence of zinc stearate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call