Abstract
We show how to make the additive Chow groups of Bloch-Esnault, Rülling and Park into a graded module for Bloch's higher Chow groups, in the case of a smooth projective variety over a field. This yields a projective bundle formula as well as a blow-up formula for the additive Chow groups of a smooth projective variety. In case the base field k admits resolution of singularities, these properties allow us to apply the technique of Guillén and Navarro Aznar to define the additive Chow groups “with log poles at infinity” for an arbitrary finite-type k -scheme X . This theory has all the usual properties of a Borel-Moore theory on finite type k -schemes: it is covariantly functorial for projective morphisms, contravariantly functorial for morphisms of smooth schemes, and has a projective bundle formula, homotopy property, and Mayer-Vietoris and localization sequences. Finally, we show that the regulator map defined by Park from the additive Chow groups of 1-cycles to the modules of absolute Kähler differentials of an algebraically closed field of characteristic zero is surjective, giving evidence of a conjectured isomorphism between these two groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.