Abstract

Hole transport layer (HTL)-free, all-inorganic CsPbIxBr3-x carbon-based perovskite solar cells (C-PSCs) have attracted much attention due to their low cost and excellent stability. The poor device efficiency is a barrier to constrain its commercialization, mainly due to the large amount of interfacial and bulk defects existed in inorganic perovskite films. In this study, an organic small molecule dicyandiamide (DCD) is added to the perovskite precursor as an additive to adjust the crystallization kinetics and passivate defects of inorganic perovskite films, simultaneously. It is demonstrated that the introduction of DCD can not only accelerate the transition process from intermediate-phase DMAPbI3 to inorganic perovskite, but also passivate defects through the Lewis acid-base interaction between cyano (CN), imine (CN) groups, and uncoordinated Pb2+. Meanwhile, the energy level alignment was optimized, which effectively improves the charge transport efficiency of CsPbIxBr3-x C-PSCs. As a result, optimized device shows an enhanced efficiency from 14.07% to 15.84%, accompanied by improved long-term stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.