Abstract
The aim of the study was to assess the effect of growth hormone (GH), voluntary exercise (Ex), and the combination of GH and Ex on bone strength, mass, and dimensions in aged, intact female rats. In addition, the effect of food restriction (FR) was studied. Fourteen-month-old virgin F-344 rats were divided into 6 groups with 13 animals in each: (1) baseline (BSL); (2) control + solvent vehicle (CTRL); (3) GH 2.5 mg/kg/day (GH); (4) exercise, voluntary: 0.6–0.7 km/day (Ex); (5) GH treatment and voluntary exercise (GH + Ex); and (6) FR. Group 1 was killed at the beginning of the study and served as baseline. All the other groups were killed after 18 weeks’ treatment. The effects of aging and treatment regimes were measured at four different skeletal sites: lumbar vertebrae, femoral cortical bone, femoral neck, and the distal femoral metaphysis. Aging in itself induced a decline in vertebral body strength and ash density. At the appendicular skeletal sites, bone mass and strength were unchanged or increased. Treatment with GH alone induced a significant increase in the biomechanical parameters at the vertebral body and the femoral diaphysis, but not at the femoral neck or the distal femoral metaphysis. Voluntary exercise on its own increased load values significantly over CTRL at the vertebral body site, but not at any of the appendicular skeletal sites. The combination of GH and voluntary exercise resulted in an additive effect at the vertebral site and at the femoral diaphysis, and a synergistic (potentiating) effect at the two femoral metaphyses. FR, on the other hand, had a negative effect on cortical bone area and strength at the femoral diaphysis, but no significant effect on the other sites tested. We conclude that GH treatment and voluntary exercise both have skeletal anabolic effects; however, these effects are exerted to differing degrees at different sites. Importantly, when dosed together, GH and Ex have either an additive or synergistic anabolic effect on all sites (axial and appendicular).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.