Abstract

Direct internal reforming of methane (steam/carbon=0.031, 850 °C) is tested using button cells of Ni-YSZ/ YSZ/LSM in which the anode layer is supported either on Ni-YSZ or on Ni-CoAl2O4. The Ni-CoAl2O4 supported cell shows little degradation with operating time, as a result of higher resistance against carbon deposition, whereas the Ni-YSZ supported cell deactivates quickly and suffers fracture in 50 h. Upon incorporation of additives such as K, Ce, or Mo into the Ni-CoAl2O4 support, cells with 0.5 wt% CeO2 exhibit the best stable performance as a result of reduced coke formation. Cells with 0.5 wt% Mo exhibit the lowest performance. Although no carbon deposit is detected in the cells with K2CO3 additives, their performance is worse than that in the CeO2 case, and, in constant-current mode, there is a sudden voltage drop to zero after a certain period of time; this time becomes shorter with increasing K content. The injection of potassium into the anode side facilitates the generation of OH− and CO32− in the anode and promotes the diffusion of these ions to the cathode. Increased polarization resistance at the cathode and increased electrolyte resistance result in such a sudden failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.