Abstract

BackgroundIntrinsically photosensitive retinal ganglion cells (ipRGCs) drive an array of non-image-forming (NIF) visual responses including circadian photoentrainment and the pupil light reflex. ipRGCs integrate extrinsic (rod/cone) and intrinsic (melanopsin) photoreceptive signals, but the contribution of cones to ipRGC-dependent responses remains incompletely understood. Given recent data revealing that cone-derived colour signals influence mouse circadian timing and pupil responses in humans, here we set out to investigate the role of colour information in pupil control in mice.ResultsWe first recorded electrophysiological activity from the pretectal olivary nucleus (PON) of anaesthetised mice with a red-shifted cone population (Opn1mwR) and mice lacking functional cones (Cnga3−/−) or melanopsin (Opn1mwR; Opn4−/−). Using multispectral stimuli to selectively modulate the activity of individual opsin classes, we show that PON cells which receive ipRGC input also exhibit robust S- and/or L-cone opsin-driven activity. This population includes many cells where the two cone opsins drive opponent responses (most commonly excitatory/ON responses to S-opsin stimulation and inhibitory/OFF responses to L-opsin stimulation). These cone inputs reliably tracked even slow (0.025 Hz) changes in illuminance/colour under photopic conditions with melanopsin contributions becoming increasingly dominant for higher-contrast/lower temporal frequency stimuli. We also evaluated consensual pupil responses in awake animals and show that, surprisingly, this aspect of physiology is insensitive to chromatic signals originating with cones. Instead, by contrast with the situation in humans, signals from melanopsin and both cone opsins combine in a purely additive manner to drive pupil constriction in mice.ConclusionOur data reveal a key difference in the sensory control of the mouse pupil relative to another major target of ipRGCs—the circadian clock. Whereas the latter uses colour information to help estimate time of day, the mouse pupil instead sums signals across cone opsin classes to provide broadband spectral sensitivity to changes in illumination. As such, while the widespread co-occurrence of chromatic responses and melanopsin input in the PON supports a close association between colour discrimination mechanisms and NIF visual processing, our data suggest that colour opponent PON cells in the mouse contribute to functions other than pupil control.

Highlights

  • Photosensitive retinal ganglion cells drive an array of non-image-forming (NIF) visual responses including circadian photoentrainment and the pupil light reflex. Intrinsically photosensitive retinal ganglion cells (ipRGCs) integrate extrinsic and intrinsic photoreceptive signals, but the contribution of cones to ipRGC-dependent responses remains incompletely understood

  • Influence of cones on mouse pupil responses Insofar as our data above reveal that cone inputs provide high-amplitude chromatic or illuminance signals to subsets of pretectal melanopsin responsive (MR) units, we investigated the extent to which these distinct sources of visual information were important for regulation of the primary physiological output known to be under pretectal olivary nuclei (PON) control—the pupil

  • Consistent with previous suggestions that chromatic signals may be of particular relevance for non-image-forming visual responses [33], here we show a substantial convergence of melanopsin and cone-dependent colour-opponent input across PON/pretectal neurons

Read more

Summary

Introduction

Photosensitive retinal ganglion cells (ipRGCs) drive an array of non-image-forming (NIF) visual responses including circadian photoentrainment and the pupil light reflex. ipRGCs integrate extrinsic (rod/ cone) and intrinsic (melanopsin) photoreceptive signals, but the contribution of cones to ipRGC-dependent responses remains incompletely understood. In addition to supporting visual perception, output from the mammalian retina drives an array of subconscious physiological and behavioural modifications including regulation of internal circadian clocks, hormone secretion and pupillomotor responses [1]. Given their fundamental role in shaping animal physiology and their clinical relevance [2], defining the sensory signals that drive such ‘non-image-forming’ (NIF) visual responses has been a long-standing goal of sensory biology [3]. IpRGCs receive visual information from rods and cones [6,7,8] and specific contributions of these outer retinal signals relative to the intrinsic, melanopsin-derived, light response remain incompletely understood [9]. A prevailing view has been that ipRGCs primarily use a combination of rods and melanopsin to track changes in ambient light intensity [26], with cone contributions limited to tracking more rapid fluctuations in illumination (visual contrast)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.