Abstract

An approximate relativistic two-component Hamiltonian for use in molecular electronic structure calculations is derived in the form of a sum of fixed atom-centered kinetic and spin-orbit operators added to the non-relativistic Hamiltonian. Starting from the well-known zeroth-order regular approximation, further steps are taken to get rid of its nonlinearity in the potential, ending up with a simple formulation with easily computable integrals that can seamlessly work with any traditional electronic structure method. Molecular tests show a good accuracy of this approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.