Abstract

Blocking estrogen receptors with antiestrogens and blocking estrogen synthesis with aromatase inhibitors are two strategies currently being used for reducing the effect of estrogen in postmenopausal estrogen receptor-positive breast cancer patients. To optimize these treatment strategies, we have investigated whether tumor progression can be delayed by combining the pure antiestrogen fulvestrant with the nonsteroidal aromatase inhibitor letrozole. These studies were done in ovariectomized, athymic mice bearing tumors of estrogen receptor-positive human breast cancer cells stably transfected with the aromatase gene (MCF-7Ca). Groups of mice with equivalent tumor volumes were injected s.c. daily with vehicle (control; n = 6), fulvestrant (1 mg/d; n = 7), letrozole (10 microg/d; n = 18), or letrozole (10 microg/d) plus fulvestrant (1 mg/d; n = 5). All treatments were effective in suppressing tumor growth compared with controls (P < 0.001). Tumor volumes of the fulvestrant-treated group had doubled in 10 weeks. After 19 weeks of letrozole (10 microg/d) treatment when tumors had nearly doubled in volume, mice (n = 18) were assigned to second-line therapy with letrozole (100 microg/d; n = 6), tamoxifen (100 microg/d; n = 6), or remained on letrozole treatment (10 microg/d; n = 6). However, tumors continued to increase in volume in these groups. Tumors of animals treated with the combination of letrozole plus Faslodex regressed over 29 weeks of treatment by 45%. Thus, the combination of letrozole plus fulvestrant was more effective in suppressing tumor growth than either letrozole or fulvestrant alone or sequential therapies with tamoxifen or a higher dose of letrozole (100 microg/d).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.