Abstract

ObjectiveMacrophages play an important role in immunogenic challenges and can aggravate and propagate local inflammation. Nuclear factor-kappa B (NF-κB) and activator protein 1 pathways can regulate these inflammatory processes by modulating expression of proinflammatory genes. Bioactive molecules present in food, such as procyanidins and polyunsaturated fatty acids, possess antiinflammatory effects in vivo and in vitro. Our aim was to assess whether they have synergistic antiinflammatory effects in murine macrophages. MethodsA nitric oxide production assay, a phosphoprotein assay, and a low-density array for 91-gene expression related to inflammation, oxidative stress, and metabolism were performed to assess the synergistic antiinflammatory effects of dimeric procyanidins (B1, B2, B3, B4) (5 μg/mL), and the polyunsaturated fatty acids, docosahexaenoic acid, and eicosapentaenoic acid (30 μM) coincubated with lipopolysaccharide for 19 h to mimic inflammation in RAW 264.7 macrophages (mouse leukaemic monocyte macrophage cell line). ResultsAdding eicosapentaenoic acid plus B3 had synergistic effects leading to decreased nitric oxide levels; the modulation of phosphoprotein levels, such as P-nuclear factor-[kappa] B p65 and P-stress-activated protein kinase/Jun-amino-terminal kinase; the down-regulation of proinflammatory genes, such as interleukins, chemokines, transcription factors; and up-regulation of antioxidant genes. ConclusionThis combination has a stronger antiinflammatory effect than either of these molecules separately in RAW macrophages. These results could lead to in vivo studies that may yield novel preventive or palliative nutritional treatments for obesity, atherosclerosis, and cardiovascular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.