Abstract

Several growth factors play an important role in liver regeneration. Once hepatic injury occurs, liver regeneration is stimulated by hepatocyte growth factor (HGF), transforming growth factor (TGF)-α, and heparin-binding epidermal growth factor-like growth factor (HB-EGF), whereas TGF-β1 terminates liver regeneration. In this study, we analyzed the effect of a combination of HGF and epidermal growth factor (EGF) on mitogen-activated protein kinase (MAPK) activity and G1 cyclin expression in primary cultured rat hepatocytes. Treatment with a combination of HGF and EGF, in comparison with that of either HGF or EGF, induced tyrosine phosphorylation of both c-Met and EGF receptor (EGFR) independently and additively stimulated MAPK activity and cyclin D1 expression, resulting in additive stimulation of DNA synthesis. On the other hand, although TGF-β1 treatment did not affect tyrosine phosphorylation of c-Met and EGFR, MAPK activity, and cyclin D1 expression, which were stimulated by HGF and EGF, DNA synthesis was completely inhibited through a marked decrease in cyclin E expression. These results indicate that potent mitogens, such as HGF, TGF-α, and HB-EGF, could induce the additive enhancement of liver regeneration cooperatively through an increase in Ras/MAPK activity followed by cyclin D1 expression, and that TGF-β1 suppresses the growth factor-induced signals between cyclin D1 and cyclin E, resulting in the inhibition of DNA synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call