Abstract
Using ab initio molecular orbital theory mainly at the 3-21+G level, intramolecular SN2 methyl transfer between two oxygens confined within a rigid template is found to proceed exclusively by a high energy retention mechanism when the oxygens are separated by three or four bonds, and by a high energy inversion mechanism when the oxygens are separated by six bonds. Both mechanisms exist when the oxygens are separated by five bonds. The CH3/CD3 kinetic isotope effects are normal (1.21-1.34) in the retention processes and inverse (0.66-0.81) in the inversion reactions. In the case of inversion, compression of C-H bonds of the transition state by structural effects in the plane perpendicular to the O-C-O plane increases the inverse isotope effect. The retention barriers are high because retention is inherently unfavorable, even when pericyclic stabilization of the transition state is possible. The inversion barriers are high because a rigid template cannot accommodate a linear O-CH3 -O structure, and the O-C-O bending vibration is stiff (the Eschenmoser effect). Using a novel design strategy, a nonrigid template has been found in which the barrier and the CH3/CD3 kinetic isotope effect are the same as in an intermolecular reaction.Key words: Eschenmoser effect, isotope effect, compression, SN2, sigmatropic rearrangement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.