Abstract

It is well known that surface-enhanced Raman scattering (SERS) substrates based on metal island films exhibit higher levels of enhancement when excited through a transparent base material than when excited directly through air. However, to our knowledge, the origin of this enhancement has never been satisfactorily explained. An initial suggestion that the additional enhancement was due to a nearest layer effect cannot account for the observation of additional enhancement for monolayer adsorbates. In this paper, finite difference time domain (FDTD) modelling is presented to show that the electric field intensity in between metal particles at the interface is higher for far-side excitation. This is reasonably consistent with the observed enhancement for silver islands on SiO2. The modelling results are in agreement with a simple physical model based on Fresnel reflection at the interface. This suggests that the additional enhancement is due to a near-field enhancement of the electric field due to the phase shift at the dielectric interface, when the light passes from the higher to the lower region of refractive index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.