Abstract

Uranium oxides are readily amenable to investigation using Raman spectroscopy, and this technique is frequently used as a chemical analysis tool. We show, in triuranium octoxide (U3O8), the presence of previously unreported Raman peaks located below 100 cm−1. By maximum intensity, the strongest peak in U3O8 appears at 54 cm−1 and is resolution limited, making this mode an ideal candidate for chemically identifying U3O8 using Raman spectroscopy. Detailed peak analysis indicates that the main spectral feature between 300 and 500 cm−1 is more accurately described by a septet than a triplet. Two samples of differing oxygen content show only minor differences in bulk crystal structure, but subtle changes in lattice dynamics are suggestive of defect scattering in analogy to UO2+x.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.