Abstract

IntroductionSeveral studies have already shown that changes in the AR gene may be associated with a more aggressive disease phenotype and even castration-resistant prostate cancer. Thus, we investigated cytogenetic and molecular alterations linked to AR. Materials and methodsTo evaluate AR methylation, we performed a cytogenetic-molecular analysis using fluorescence in situ hybridization that uses specific probes for the AR gene (Xq11.12) and the X chromosome centromere. For AR activity, we performed a qualitative analysis of human androgen receptor activity. To analyze the expression of AR in PC3 and LNCaP cell lines, we used qPCR assays. ResultsIn the qPCR assay, we found downregulation of AR in the PC3 cell line compared with the LNCaP. We found the presence of X chromosome polysomy in PC-3 and LNCaP cell lines by FISH assay. In the HUMARA-Q assay, we found two X chromosomes/cell and the activity of both AR in the PC-3 cell line. In LNCaP cells, we found two X chromosomes/cell and methylation of only one AR. ConclusionCastration-resistant prostate cancer phenotype represents a significant challenge in the setting of urological management. The X chromosomes and AR-linked alterations may contribute to a better understanding of the disease. However, further studies should be performed in an attempt to elucidate as much as possible the role of AR in the castration-resistant prostate cancer phenotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call