Abstract

The reaction of Re2(CO)8[mu-eta2-C(H)=C(H)Bu(n)](mu-H) with Ph3SnH at 68 degrees C yielded the new compound Re2(CO)8(mu-SnPh2)2 (10) which contains two SnPh2 ligands bridging two Re(CO)(4) groups, joined by an unusually long Re-Re bond. Fenske-Hall molecular orbital calculations indicate that the bonding in the Re2Sn2 cluster is dominated by strong Re-Sn interactions and that the Re-Re interactions are weak. The 119Sn Mössbauer spectrum of 10 exhibits a doublet with an isomer shift (IS) of 1.674(12) mm s(-1) and a quadrupole splitting (QS) of 2.080(12) mm s(-1) at 90 K,characteristic of Sn(IV) in a SnA2B2 environment. The IS is temperature dependent, -1.99(14) x 10(-4) mm s(-1) K(-1); the QS is temperature independent. The temperature-dependent properties are consistent with the known Gol'danskii-Kariagin effect. The germanium compound Re2(CO)8(mu-GePh2)2 (11) was obtained from the reaction of Re2(CO)8[mu-eta2-C(H)=C(H)Bu(n)](mu-H) with Ph3GeH. Compound 11 has a structure similar to that of 10. The reaction of 10 with Pd(PBu(t)3)2 at 25 degrees C yielded the bis-Pd(PBu(t)3) adduct, Re2(CO)8(mu-SnPh2)2[Pd(PBu(t)3)]2 (12); it has two Pd(PBu(t)3) groups bridging two of the four Re-Sn bonds in 10. Fenske-Hall molecular orbital calculations show that the Pd(PBu(t)3) groups form three-center two-electron bonds with the neighboring rhenium and tin atoms. The mono- and bis-Pt(PBu(t)3) adducts, Re2(CO)8(mu-SnPh2(2)[Pt(PBu(t)3)] (13) and Re2(CO)8(mu-SnPh2)2[Pt(PBu(t)3)]2 (14), were formed when 10 was treated with Pt(PBu(t)3)2. A mono adduct of 11, Re2(CO)8(mu-GePh2)2[Pt(PBu(t)3)] (15), was obtained similarly from the reaction of 11 with Pt(PBu(t)3)2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.